Please select your home edition
Edition
Maritimo 2023 M600 LEADERBOARD

New evidence of marine heatwave impacts on Western Alaska Chum Salmon

by NOAA Fisheries 9 Dec 2023 18:31 UTC
Chum salmon swimming upriver © NOAA Fisheries, Stori Oates

After looking at nearly two decades of survey data, scientists found evidence to suggest that recent marine heatwave events in the eastern Bering Sea and the Gulf of Alaska may have played a key role in juvenile chum salmon survival. Scientists also suspect this impacted subsequent adult returns to western Alaska rivers.

In a new study published today, Alaska Fisheries Science Center and Alaska Department of Fish and Game scientists found that juvenile (first ocean year) chum salmon were more abundant during the more recent an exceptionally warm marine period (2014-2019) compared to previous warm (2003-2005) and cold (2006-2013) periods. However, this increase in juvenile abundance did not lead to an increase in adult returns as expected.

Researchers also observed that during the 2014-2019 warm period, juveniles were larger in size but in poorer body condition. These salmon consumed lower quality prey. As a result, they had fewer energy reserves and a lower probability of surviving their first winter. Scientists speculate this may have led to lower adult returns in recent years.

"Our data suggest a shift in how juvenile chum salmon are allocating energy during their first year at sea. This is a critical period for them and our results illustrate how anomalous events in marine ecosystems can impact their survival and future returns," said Ed Farley, lead author and manager of the Ecosystem Monitoring and Assessment Program.

Changing Arctic Conditions

Arctic regions including the northern Bering, Chukchi, and Beaufort seas have been experiencing accelerated warming and extremes in seasonal sea ice extent. In the northern Bering Sea, unprecedented reductions in seasonal sea ice occurred during winter of 2017-2018. This was followed by an increase in warm southerly winds during February 2019 and early ice retreat.

The ecosystem response to these extreme events was rapid.

Critical Stages in Western Chum Salmon's Life

Chum salmon spend the majority of their life in the marine environment. In western Alaska, juvenile chum salmon enter the marine waters of the northern Bering Sea from mid-June to mid-July. They spend their first summer at sea feeding and growing along the northern Bering Sea shelf.

During late fall and early winter, western Alaska juvenile chum salmon migrate out of the Bering Sea and into the Gulf of Alaska. This is where they spend their first winter at sea. Over the next 1-4 or more years, they migrate between the Gulf of Alaska during winter and the Gulf of Alaska and the Bering Sea during summer. After they mature they return to their natal rivers to spawn.

Juvenile chum salmon tend to allocate energy to rapid growth when they first enter the marine environment. Later in the season energy is allocated to fat storage. Faster growth rates early on reduce the chances that a juvenile salmon will become a meal for predators. Larger juvenile salmon that attain sufficient energy reserves by the end of summer/early fall also have a greater probability of surviving the winter.

How Warming Oceans May Have Affected Western Chum Salmon

Scientists speculate that chum salmon overwinter survival was affected by exposure to two separate warming events that occurred within their early marine and winter habitats. As juveniles when they first entered the marine environment, they were subjected to warmer than average temperatures in the northern Bering Sea. Those that survived and migrated to the Gulf of Alaska to overwinter were also exposed to warmer than average temperatures.

When exposed to these higher than normal ocean temperatures in their habitats, their metabolic rates increased, requiring them to seek more food for growth. The prey that was available within their early marine habitat was of lower quality. Another issue is that typically prey availability during winter decreases.

Researchers found that juvenile chum salmon fed on a variety of prey during the warm and cold periods. However during warm periods, researchers observed that there was an increased percentage of lower quality prey available, especially during the recent warm period.

Scientists saw a shift in prey to cnidaria jellyfish during warm years. The caloric content of this jellyfish is roughly half that of other juvenile chum salmon prey.

Juvenile chum salmon stomach contents contained jellyfish during the first warm period. In the second warm period, jellyfish were proportionally more dominant in the stomach contents. This was also the period with the lowest fat content values for juvenile chum salmon, suggesting a direct connection between late summer fat storage and prey quality.

Juvenile salmon potentially faced increased competition among other chum salmon stocks that are also distributed in the Gulf of Alaska during winter.

"It is really these potential interactions among sea temperature, prey quality, and prey quantity that can affect energy accumulation or fat storage in juvenile chum salmon during their first year at sea. These interactions may play a significant role in survival during that first winter," said Kathrine Howard, co-author, fishery scientist, Alaska Department of Fish and Game.

Juvenile Chum Salmon Abundance and Adult Salmon Runs

The abundance of juvenile chum salmon in the northern Bering Sea increased during the more recent warm period. Scientists suspect that warmer water in natal rivers and streams could have improved the freshwater survival of young chum salmon. This may have enabled more juveniles to make it downstream to the ocean.

While a strong relationship between juvenile chum salmon abundance and adult returns to rivers in the northern Bering Sea has not been established, the expectation was the greater abundance of juvenile chum salmon seen in the recent warm period would herald higher adult returns to the region three to four years later.

This was not the case because when juvenile salmon entered the marine environment they didn't find the food they needed to attain sufficient fat reserves prior to winter. As a result, scientists suspect this likely impacted juvenile salmon survival and potentially contributed to recent annual variation in adult survival.

"Recent declines in chum salmon and subsequent closures of commercial and subsistence fisheries in western Alaska, coinciding with years of record warm water temperatures, has heightened the urgency for this research. Many people are dependent on salmon in Alaska for food security, cultural traditions and local economies. Through this and continuing work we hope to provide information to help subsistence and small-scale commercial fisheries and state and federal resource managers plan and adapt to climate change," said Farley.

Related Articles

Washington state river restoration project
Reviving salmon habitat, supporting local jobs This spring, NOAA partner the Lower Columbia Estuary Partnership broke ground on a large-scale salmon habitat restoration project on the lower East Fork Lewis River in Washington State. Posted on 17 May
Scientists estimate krill abundance in Alaska
A commonly used machine-learning algorithm was key Throughout the world, scientists engage in regular vessel surveys to produce estimates of species distribution and abundance. These estimates let scientists track species- and ecosystem-level trends over time to support ecosystem-based fishery management. Posted on 22 Feb
Oregon Coast coho sustain sportfishing seasons
Rebound of wild populations boosts productivity enough for harvest Low salmon returns have closed salmon fishing in California and limited it elsewhere on the West Coast. But Oregon anglers have enjoyed robust sportfishing on a strong wild salmon species. Posted on 23 Dec 2024
Some fish and crab may shift further north
New regional models are being developed for the Bering Sea to better anticipate climate change The eastern Bering Sea is a highly productive marine ecosystem, supporting more than 40 percent of the annual commercial fisheries landings by volume in the United States. Posted on 21 Dec 2024
How the 2024 hurricane season impacted fishing
Learn how business owners, marine ecosystems, and recreational fishing seasons were affected The 2024 Atlantic hurricane season, which officially ended on November 30, showcased above-average activity. It had a profound impact on recreational fishing in the Gulf of Mexico, causing recreational fishers to face challenges and interim closures. Posted on 20 Dec 2024
Climate, Ecosystems, and Fisheries
Climate change is impacting the nation's valuable marine and Great Lakes ecosystems The NOAA Climate, Ecosystems, and Fisheries Initiative (CEFI) is an effort to provide decision-makers with the information they need to prepare for and adapt to changing oceans and climate. Posted on 7 Dec 2024
Fifteen years of searching for smalltooth sawfish
NOAA Fisheries scientists have been studying smalltooth sawfish in South Florida since 2009 NOAA Fisheries scientists have traveled to South Florida multiple times a year for 15 years to study smalltooth sawfish. Posted on 17 Nov 2024
Harbor Seals consume up to a third of Steelhead
Unchecked predation may undermine recovery actions, study finds Harbor seals consume as many as a third of young steelhead smolts migrating out of the Nisqually River's delta in southern Puget Sound, new research shows. Posted on 21 Sep 2024
The Elwha River restoration
Elwha River restoration project offers valuable insights into the complex ecological processes Elwha River restoration project offers valuable insights into the complex ecological processes involved in dam removal and river recovery. Posted on 16 Sep 2024
Reestablishing connections for fish and tribes
North Santiam River is a high priority for the recovery of Upper Willamette River spring Chinook With $710,000 in funding from NOAA, the Confederated Tribes of the Grand Ronde will remove barriers to the passage of threatened salmon and trout species on their land. Posted on 16 Aug 2024
Palm Beach Motor YachtsMaritimo 2023 S600 FOOTER