Please select your home edition
Edition
495 McKinley Drive Lboard Dec 2024

Some fish and crab may shift further north in Alaskan waters than previously predicted

by NOAA Fisheries 21 Dec 17:51 UTC
The research vessel Norseman II pushes carefully through the ice, maneuvering for open water © Gavin M Brady / NOAA Fisheries

The eastern Bering Sea is a highly productive marine ecosystem, supporting more than 40 percent of the annual commercial fisheries landings by volume in the United States.

Scientists have developed new models that predict more extreme changes in this ecosystem by the end of the century. They anticipate larger summer northward shifts and changes (both increases and decreases) in the area occupied by important commercial crab and fish species.

Specifically, the majority of models estimate changes in the center of distribution for several commercially important species. They predict that most species' summer distributions will shift north by between 50 and 200 kilometers by 2080-2089. Scientists also project:

  • Large declines in the amount of area occupied by red king crab and snow crab and potentially northern rock sole in the summer months.
  • A substantial increase in the area occupied by arrowtooth flounder, a key predator of walleye pollock.
  • Declines in probability of occurrence for most species in areas with low pH and oxygen concentration.

These changes are altogether more extreme than previous species distribution model projections, which accounted for fewer climate effects.

"As a subarctic ecosystem at the sea ice margin, the eastern Bering Sea is warming faster than much of the global ocean, resulting in the rapid redistribution of key fishery and subsistence resources," said Maurice Goodman, lead author and NOAA Affiliate, University of Alaska, Cooperative Institute for Climate, Oceans and Ecosystems Studies."We need to provide resource managers, fishermen, and coastal communities information so they can make informed decisions about how to adapt to these changing conditions."

New and better models to anticipate ocean changes

Scientists built species distribution models for eight common and/or commercially important species of groundfish and crabs in the eastern Bering Sea (adults and juveniles). These include walleye pollock, Pacific halibut, Pacific cod, arrowtooth flounder, northern rock sole, yellowfin sole, snow crab, and red king crab.

Spatial distribution models are central to the adaptive management of fisheries under long-term changes in oceanographic conditions and sudden shocks (e.g., marine heatwaves). These models can be used to support sustainable fisheries management in multiple ways, including by:

  • Providing spatiotemporal fish population information to inform the future allocation of catch among fishing sectors and seasons.
  • Informing voluntary and regulatory measures to reduce bycatch and human-wildlife interactions.
  • Informing evaluations of climate-related risks and opportunities for fishing sectors and communities and improving scientific survey design to better estimate fish abundance and trends.
  • Guiding the public process of analyzing and allocating the spatial and temporal distribution of human activities in marine areas.

To date, most studies projecting marine species distributions rely principally on temperature and static habitat characteristics such as depth. This can potentially lead to significant underestimation of species vulnerability to climate change.

However, for this study, ecologists combined 40 years of scientific surveys with a high-resolution oceanographic model. This model was adapted to the eastern Bering Sea by scientists at NOAA's Alaska Fisheries Science Center as part of the Alaska Climate Integrated Modeling project. They examined the effects of bottom temperature. But they also incorporated information on oxygen, pH, and a regional climate index (the extent of the eastern Bering Sea "cold pool"). They considered all of these factors to produce a range of different climate projections through the end of the century. Model projections also anticipated warming under both low and high greenhouse gas emission scenarios.

"A big challenge for this modelling effort was to determine how likely certain outcomes are if some aspects of the system are not exactly known," said Jonathan Ream, co-author and fisheries biologist at the Alaska Fisheries Science Center. "We compared projections among different types of models to quantify the sources of uncertainty when including these novel factors (pH, oxygen, and the cold pool) in species range projections."

The importance of accounting for the "Cold Pool" and other factors to understand future fish and crab movements in the Bering Sea

The Cold Pool

The dynamics of the Bering Sea ecosystem are tightly coupled with the annual extent of sea ice and the cold pool that forms beneath it. This colder mass of water affects primary production in the Bering Sea. It also affects the spatial distribution of important groundfish and their prey, including krill and forage fish.

The cold pool can also act as a barrier to the movements of groundfish along the shelf. For example, models demonstrated that the cold pool can block arrowtooth flounder from reaching suitable environmental conditions on the inner Eastern Bering Sea shelf. With the projected loss of the cold pool under some future carbon dioxide emission scenarios, a much larger portion of the shelf could become accessible to flounder. Accordingly, scientists found that models which accounted for variation in species distributions associated with the cold pool projected much larger future range shifts than those that did not.

Oxygen and pH

The oceans absorb about 30 percent of global carbon dioxide emissions, and warmer water holds less oxygen. Climate change is also leading to the acidification of deoxygenation of much of the global ocean. All animals need oxygen to survive, and many species are expected to shift towards deeper, cooler waters to keep up with climate change. Lower dissolved oxygen content at depth may constrain their ability to do so. Reduced pH in water has the potential to impair organisms by changing their metabolism and physiological function. For crabs and other calcifying organisms, it can decrease calcification and shell formation rates.

Yet, few studies projecting future changes in species distributions integrate the effects of oxygen and pH. In many cases, these variables are not available to modelers, but recent advances in oceanographic modeling have made it possible to include their effects.

The authors found that the estimated effects of oxygen and pH were largely consistent among species. Where environmental oxygen and pH levels were lower, groundfish and crabs were less likely to be observed in scientific surveys. However, they also found the effects of oxygen and pH were difficult to disentangle using survey data, so they modeled their effects using separate models. In projecting future climate-driven changes in species distributions, they gave more say to models that did a better job reproducing past trends.

Where scientists hope to go next with this research

These results build on—and in many cases agree with—previous distribution modeling efforts in the Bering Sea. However, they demonstrate that models that account for factors beyond temperature can result in more pronounced range shift projections.

"What's really exciting about this research is we are now able to construct long-term species range forecasts, which incorporate a wider array of climate impacts," said Kirstin Holsman, co-author and research fishery biologist, Alaska Fisheries Science Center.

In future work, species distribution models may be used to improve the representation of species interactions in multispecies stock assessment models. Scientists also hope to be able to produce short-term forecasts and long-term projections that incorporate a better understanding of predator-prey overlap.

Related Articles

How the 2024 hurricane season impacted fishing
Learn how business owners, marine ecosystems, and recreational fishing seasons were affected The 2024 Atlantic hurricane season, which officially ended on November 30, showcased above-average activity. It had a profound impact on recreational fishing in the Gulf of Mexico, causing recreational fishers to face challenges and interim closures. Posted on 20 Dec
Climate, Ecosystems, and Fisheries
Climate change is impacting the nation's valuable marine and Great Lakes ecosystems The NOAA Climate, Ecosystems, and Fisheries Initiative (CEFI) is an effort to provide decision-makers with the information they need to prepare for and adapt to changing oceans and climate. Posted on 7 Dec
Fifteen years of searching for smalltooth sawfish
NOAA Fisheries scientists have been studying smalltooth sawfish in South Florida since 2009 NOAA Fisheries scientists have traveled to South Florida multiple times a year for 15 years to study smalltooth sawfish. Posted on 17 Nov
Harbor Seals consume up to a third of Steelhead
Unchecked predation may undermine recovery actions, study finds Harbor seals consume as many as a third of young steelhead smolts migrating out of the Nisqually River's delta in southern Puget Sound, new research shows. Posted on 21 Sep
The Elwha River restoration
Elwha River restoration project offers valuable insights into the complex ecological processes Elwha River restoration project offers valuable insights into the complex ecological processes involved in dam removal and river recovery. Posted on 16 Sep
Reestablishing connections for fish and tribes
North Santiam River is a high priority for the recovery of Upper Willamette River spring Chinook With $710,000 in funding from NOAA, the Confederated Tribes of the Grand Ronde will remove barriers to the passage of threatened salmon and trout species on their land. Posted on 16 Aug
Progress update on two fishing data initiatives
Fishing Effort Survey study and the collaborative initiative to re-envision the partnership We may be in the dog days of summer, but I am pleased to share that progress continues on two high-visibility recreational fishing data collection initiatives — Fishing Effort Survey study and the collaborative initiative to re-envision the partnership. Posted on 15 Aug
Teams and technology trace Klamath River recovery
By tracking new salmon returns The removal of four dams on the Klamath River will reopen more habitat to Pacific salmon than all previous dam removals in the West combined. Posted on 10 Aug
Successful, coincidental sailfish recapture season
Four tagged sailfish were recaptured within 4 days of each other in the Florida Keys Scientists, with help from recreational anglers, commonly use tags to study highly migratory species. Posted on 31 Jul
Link between shark physical traits and ecology
Accurate drawings provide insight into the lifestyle of sharks A new study on sharks finds that physical traits related to oxygen uptake can be measured from accurate drawings of nearly all sharks. Posted on 30 Jul
Savvy Navvy 2024Maritimo 2023 S600 FOOTER