Please select your home edition
Edition

Modifying fishing gear reduces shark bycatch in the Pacific

by NOAA Fisheries 20 Aug 2022 19:54 UTC
Oceanic whitetip shark photographed off Kona, Big Island. The individual is carrying trailing gear from a longline vessel and has damage to its pectoral fin, likely from the trailing gear including wire leader and weight © Deron Verbeck

Conservation and management of shark populations is increasingly important on a global scale because many species are vulnerable to overfishing. Internationally protected shark species remain at risk due to bycatch in commercial fisheries.

In the western Pacific Ocean, oceanic whitetip and silky shark populations are overfished. Oceanic whitetip sharks are also experiencing overfishing, and were listed as threatened under the Endangered Species Act in 2018. Recent research has shown that switching to a new type of fishing gear can drastically reduce bycatch for these species.

What is Bycatch?

Bycatch is when non-targeted or protected species are accidentally captured during commercial fishing operations. It threatens seabirds, sea turtles, whales, dolphins, sharks, and rays globally. Oceanic whitetip and silky sharks are inadvertently caught as bycatch in pelagic longline fisheries targeting tuna, like the Hawai'i deep-set longline fishery.

Bycatch reduction measures in the Pacific

Several regional fisheries management organizations have undertaken steps to reduce bycatch-related mortality of oceanic whitetip and silky sharks. This includes measures implemented by the Western and Central Pacific Fisheries Commission that prohibit fishermen from retaining these sharks or their fins and require sharks be handled and released as soon as they are brought alongside the vessel in a manner that minimizes harm.

Hawai'i deep-set longline fishing vessels are now required to use leaders composed of monofilament material, rather than wire, to reduce mortality of captured oceanic whitetip sharks. The fishermen are also required to remove the hook, or, if they are unable to do so, to cut the fishing gear as close to the hook as possible. Cutting monofilament leaders is much easier than cutting wire leaders. This gear and operational change was initiated by the Hawai'i Longline Association, whose members, more than 90 percent of the Hawai'i longline fleet, voluntarily transitioned to monofilament leader material before the regulations went into place. Researchers found that sharks could bite through monofilament gear and free themselves more quickly and easily than if they were caught on wire leaders.

Gear Modification Research

Drs. Molly Scott, Melanie Hutchinson, and Jennifer Stahl at the Cooperative Institute for Marine and Atmospheric Research tested different gear configurations for Hawaii longline fishing vessels with co-authors from the University of Hawai'i. The goal was to reduce injury and mortality to bycaught species. They compared catch rates and condition (e.g., alive, dead, level of injury) of target and non-target species after capture on either wire or monofilament leaders. They also tested different configurations (size, diameter, shape, metal type, and leader material). This helped determine the amount of strength required to either break or open the hook, and the time taken for trailing gear to deteriorate.

Their research was recently published in the journal of Marine Policy. They found that switching from wire to monofilament leaders reduced the mortality rate of sharks by approximately 41 percent and still maintained catch rates of target species (bigeye tuna). Branchlines with wire leaders began to deteriorate after approximately 60 days, but hooks with monofilament leaders did not break apart, even after 360 days. Additionally, the breaking strength of fishing hooks was greater for larger, forged stainless steel hooks typically used in U.S. Pacific longline fisheries.

This study suggests that using a combination of monofilament leader material with smaller, galvanized, unforged hooks can reduce the amount of force required to straighten or open a hook by up to 70 percent. Dr. Scott shared, "This combination of gear can substantially reduce injury and mortality of sharks and many other species, including protected species such as false killer whales. We strongly support the Hawai'i Longline Association and their voluntary transition from wire to monofilament leaders. We also want to highlight the importance of removing as much trailing gear as possible from the animals (including the weights) to prevent further injury."

Related Articles

New study sheds light on Alaska's mysterious shark
“One-stop shop” for information critical to conserving the highly vulnerable Pacific sleeper shark Researchers created a "one-stop shop" for information critical to conserving the highly vulnerable Pacific sleeper shark. Posted on 21 Apr
Fisheries Economics of the United States Report
A summary of the economic performance of U.S. marine fisheries The annual report provides a summary of the economic performance of U.S. marine fisheries and related industries and their important role in our nation's economy. Posted on 20 Apr
Influence of climate on young salmon
Providing clues to future of world's largest sockeye run The world's largest run of sockeye salmon begins in Bristol Bay river systems that flow into the Bering Sea. There young salmon face a crucial bottleneck: they must find good food and conditions so they can store enough fat to survive first winter at sea. Posted on 12 Apr
Revisions to the Endangered Species Act
Finalized by NOAA Fisheries & the U.S. Fish and Wildlife Service The agencies finalized a series of revisions to the joint regulations to improve the agencies' ability to conserve and recover listed species. Posted on 5 Apr
Emergency response effort for endangered Sawfish
A project to rescue and rehabilitate smalltooth sawfish NOAA Fisheries and partners are initiating a project to rescue and rehabilitate smalltooth sawfish affected by an ongoing mortality event in South Florida. Posted on 2 Apr
Diverse habitats help Salmon weather change
Chinook in three creeks may be vulnerable alone, but resilient together Restored salmon habitat should resemble financial portfolios, offering fish diverse options for feeding and survival so that they can weather various conditions as the climate changes, a new study shows. Posted on 22 Mar
Enhancing Wild Red King Crab populations
An important commercial and subsistence fishery species in Alaska Scientists examine effects of release timing and size at release on survival of hatchery-reared red king crab. Posted on 18 Mar
Oyster Shell recycling key to coastal protection
Gulf Coast partners will expand efforts to restore oyster populations With $5 million in NOAA funds, Gulf Coast partners will expand efforts to restore oyster populations, protect vanishing land, and reconnect communities to their coastal heritage. Posted on 9 Mar
Cold Water Connection campaign reopens rivers
For Olympic Peninsula Salmon and Steelhead With $19 million in NOAA funds, nonprofit and tribal partners plan to remove 17 barriers blocking fish passage on critical spawning rivers originating in Olympic National Park, Washington. Posted on 24 Feb
Sacramento river chinook salmon remain endangered
Recent progress offers hope for recovery but serious threats continue to affect species Partners have pulled together to support the recovery of endangered Sacramento winter-run Chinook salmon in the last few years. However, the species still faces threats from climate change and other factors. Posted on 9 Feb