Please select your home edition
Edition
Palm Beach Motor Yachts

Surface slicks are pelagic nurseries for diverse ocean fauna

by NOAA Fisheries 15 Feb 2021 13:31 UTC
Composite image showing examples of the remarkable diversity of larval and juvenile fish and invertebrates found living in surface slick nurseries along West Hawai'i © NOAA Fisheries

To survive the open ocean, freshly hatched tiny fish larvae must find food, avoid predators, and navigate ocean currents. Their experiences during these great ocean odysseys have long been a mystery, until now.

We have discovered that a surprisingly dense and diverse array of marine animals find refuge in so-called "surface slicks" during early life. To view an immersive, interactive version of this story, check out our story map: Hidden World Just Below the Surface.

Surface slicks are home to the larvae of at least 112 marine fish species, including commercially and ecologically important fish such as mahi-mahi, jacks, and billfish. Serving as makeshift nursery habitats, surface slicks are meandering lines of smooth surface water that collect plankton and shelter-providing debris. They are formed from the convergence of ocean currents, tides, and variations in the seafloor.

"These 'bioslicks' form an interconnected superhighway of rich nursery habitat that accumulate and attract thousands of young fish, along with dense concentrations of food and shelter," says Dr. Jonathan Whitney, a research marine ecologist for NOAA and lead author of the study, published today in Scientific Reports. "The fact that surface slicks host such a large proportion of larvae, along with the resources they need to survive, tells us they are critical for the replenishment of adult fish populations."

That larvae hosted in slick nurseries grow up and radiate out into neighboring ecosystems. There, they join adult fish populations from shallow coral reefs to the open ocean to the bottom of the deep sea.

What's more, many forage (prey) fish, like flying fish, spend their larval and juvenile life stages in surface slicks. "These biological hotspots provide more food at the base of the food chain that amplifies energy up to top predators," says study co-author Dr. Jamison Gove, a research oceanographer for NOAA. "This ultimately enhances fisheries and ecosystem productivity."

A densely populated superhighway

Surface slicks are common in coastal areas around the world, including Hawai'i. On the leeward coast of Hawai?i Island, slicks are a dominant and dynamic surface feature across the coastline.

The people of Hawai'i have long recognized slicks as an important part of the seascape. The traditional Hawaiian mele (song), Kona Kai 'Opua, references the "Ke kai ma'oki'oki," or "the streaked sea," in the peaceful seas of Kona. Despite these historical observations, scientists have only recently begun to understand the biological and ecological importance of surface slicks.

To unravel the slicks' secrets, NOAA's Pacific Islands Fisheries Science Center worked with an international team of scientists. The research team conducted more than 130 plankton net tows inside the surface slicks and surrounding waters along the West Hawai'i coastline. In these areas, they searched for larvae and other plankton that live close to the surface. They then combined those in-water surveys with satellite images of the slick footprints—a new technique for identifying these ocean features.

Though the slicks only covered around 8 percent of the ocean surface in the 380-square-mile (1,000-square-kilometer) study area, they had a disproportionately dense composition:

  • An astounding 39 percent of the surface-dwelling larval fish
  • More than 25 percent of its zooplankton, which the larval fish eat
  • A majority (75 percent) of its floating organic debris (like feathers and leaves)

Larval fish densities in surface slicks off West Hawai?i were, on average, 7.2 times greater than densities in the surrounding waters.

"I love that we can bring our best field and laboratory science together with the latest in satellite mapping to generate new understanding about a phenomenon that most people confuse for boat wakes or pollution offshore," noted co-author Dr. Greg Asner of Arizona State University's Center for Global Discovery and Conservation Science. "Bioslicks are actually biodiversity hotspots and nurseries for reefs and deep-water ecosystems alike."

A popular marine nursery

The remarkable diversity of fishs found in slick nurseries represents nearly 10 percent of all fish species recorded in Hawai?i. "We were shocked to find larvae of so many species, and even entire families of fish, that were only found in surface slicks," Dr. Whitney says. "This suggests they are dependent on these habitats."

Importantly, many of these larvae didn't just happen upon the surface slicks. Eggs and little hatchlings passively accumulate in slicks—just as debris does. The study suggests that bigger larvae (those nearly half an inch, or longer than 1 centimeter) are actively targeting slicks to capitalize on concentrated prey and shelter from predators. "This reinforces the notion that, even at these small sizes, larval fish are active, competent swimmers, wayfinding and choosing where they want to be," Dr. Whitney says.

Narrow slicks have a broad reach

"Slicks are like moving highways of plankton, bridging the pelagic and coral reef ecosystems," Dr. Whitney says. "This movement helps retain developing reef fish larvae nearshore and even deliver bigger, ready-to-settle larvae back to coral reefs."

Slicks also create foraging hotspots for larval fish predators. "Baby fish that grow up feeding in these biological hotspots can become bigger, faster, and better swimmers than fish growing up in surrounding waters," explains Dr. Gove.

While slicks may seem like havens for many tiny marine animals, there's also a hidden hazard that accumulates in surface slicks: plastic debris. "Until we stop plastics from entering the ocean," Dr. Whitney says, "the accumulation of hazardous plastic debris in these nursery habitats remains a serious threat to the biodiversity hosted here."

Until now, the ecological impact of slicks has not been extensively studied in tropical regions like Hawai'i. The new research shows these conspicuous phenomena hold more ecological value than meets the eye.

"Our work illustrates how these oceanic features (and animals' behavioral attraction to them) impact the entire surface community, with implications for the replenishment of adults that are important to humans for fisheries, recreation, and other ecosystem services," says Dr. Margaret McManus, co-author, Professor and Chair of the Department of Oceanography at the University of Hawai?i at Manoa. "These findings will have a broad impact, changing the way we think about oceanic features as pelagic nurseries for ocean fishes and invertebrates."

Related Articles

Scientists estimate krill abundance in Alaska
A commonly used machine-learning algorithm was key Throughout the world, scientists engage in regular vessel surveys to produce estimates of species distribution and abundance. These estimates let scientists track species- and ecosystem-level trends over time to support ecosystem-based fishery management. Posted on 22 Feb
Oregon Coast coho sustain sportfishing seasons
Rebound of wild populations boosts productivity enough for harvest Low salmon returns have closed salmon fishing in California and limited it elsewhere on the West Coast. But Oregon anglers have enjoyed robust sportfishing on a strong wild salmon species. Posted on 23 Dec 2024
Some fish and crab may shift further north
New regional models are being developed for the Bering Sea to better anticipate climate change The eastern Bering Sea is a highly productive marine ecosystem, supporting more than 40 percent of the annual commercial fisheries landings by volume in the United States. Posted on 21 Dec 2024
How the 2024 hurricane season impacted fishing
Learn how business owners, marine ecosystems, and recreational fishing seasons were affected The 2024 Atlantic hurricane season, which officially ended on November 30, showcased above-average activity. It had a profound impact on recreational fishing in the Gulf of Mexico, causing recreational fishers to face challenges and interim closures. Posted on 20 Dec 2024
Climate, Ecosystems, and Fisheries
Climate change is impacting the nation's valuable marine and Great Lakes ecosystems The NOAA Climate, Ecosystems, and Fisheries Initiative (CEFI) is an effort to provide decision-makers with the information they need to prepare for and adapt to changing oceans and climate. Posted on 7 Dec 2024
Fifteen years of searching for smalltooth sawfish
NOAA Fisheries scientists have been studying smalltooth sawfish in South Florida since 2009 NOAA Fisheries scientists have traveled to South Florida multiple times a year for 15 years to study smalltooth sawfish. Posted on 17 Nov 2024
Harbor Seals consume up to a third of Steelhead
Unchecked predation may undermine recovery actions, study finds Harbor seals consume as many as a third of young steelhead smolts migrating out of the Nisqually River's delta in southern Puget Sound, new research shows. Posted on 21 Sep 2024
The Elwha River restoration
Elwha River restoration project offers valuable insights into the complex ecological processes Elwha River restoration project offers valuable insights into the complex ecological processes involved in dam removal and river recovery. Posted on 16 Sep 2024
Reestablishing connections for fish and tribes
North Santiam River is a high priority for the recovery of Upper Willamette River spring Chinook With $710,000 in funding from NOAA, the Confederated Tribes of the Grand Ronde will remove barriers to the passage of threatened salmon and trout species on their land. Posted on 16 Aug 2024
Progress update on two fishing data initiatives
Fishing Effort Survey study and the collaborative initiative to re-envision the partnership We may be in the dog days of summer, but I am pleased to share that progress continues on two high-visibility recreational fishing data collection initiatives — Fishing Effort Survey study and the collaborative initiative to re-envision the partnership. Posted on 15 Aug 2024
Palm Beach Motor YachtsMaritimo 2023 S600 FOOTER