Please select your home edition
Edition
Maritimo 2023 S600 LEADERBOARD

Genetic evidence points to critical role of skate nursery areas, and a possible new species

by NOAA Fisheries 16 Aug 2020 09:17 UTC
A skate egg case, or `mermaid's purse.` © NOAA Fisheries

Skates are an important predator and widely distributed across Alaska marine ecosystems. There is interest in developing commercial fisheries for them.

However, skates are vulnerable to fishing impacts because they typically develop slowly and do not reproduce until later in life. Science can provide a basis for ensuring sustainable fishery development and helping to protect critical life stages and habitat.

NOAA Fisheries scientists conducted an important genetic study using next-generation gene sequencing of skates in Alaska. It confirms that egg case nurseries are essential to the genetic diversity and evolutionary success of these shark relatives. It also revealed something unexpected.

"We set out to use genetic analysis to find out how the two most abundant skate species in the Bering Sea are using nursery areas. How important is each nursery area? Are different nurseries used by distinct components of each species?" said Ingrid Spies, biologist at NOAA's Alaska Fisheries Science Center, who led the study. "We found answers to our questions, and a surprising result.

Did we accidentally discover a new species?"

Sharks and skates share an ancient lineage. Skates are distinguished by their flat body shape, suited for life near the seafloor. They are sometimes called "flat sharks".

Skates in Alaska: a vulnerable marine resource

Sixteen known skate species glide through Alaska seas. The Alaska skate makes up 90 percent of skate biomass on the Bering Sea shelf. The Aleutian skate predominates in deeper waters.

Skates are among the most vulnerable species in Alaska ecosystems. These large, long-lived fish grow slowly, mature late, and produce few offspring. All of this means skate populations are highly susceptible to the impacts of fishing and environmental change.

There is currently no targeted commercial skate fishery in Alaska. Nonetheless, skates are vulnerable to capture as they are caught unintentionally in other fisheries. Interest in developing a targeted skate fishery has grown as Alaskan communities seek to strengthen their economic resilience under changing environmental conditions.

Ensuring the sustainability of skate populations is a priority for NOAA Fisheries as part of an ecosystem-based approach to managing Alaska's valuable fisheries. To effectively manage skate populations and potentially develop a profitable fishery, it is essential to understand the significance of their egg case nurseries.

Skate nursery sites: What role do they play in preserving genetic diversity?

Skates produce their young in distinctive "mermaid purse" egg cases, familiar to beachcombers. The female skate is very particular about where she deposits her egg cases: the location must have the right slope, temperature, and oxygen level.

A skate nursery may support as many as 50,000 egg cases in a square kilometer area. Embryos develop there for as many as 5years before they hatch—one of the longest gestation periods of any vertebrate.

Scientists and fishery managers have recognized the importance of nursery sites as essential habitat for skates.

"It all started with Jerry Hoff's research on skate nursery areas in the Bering Sea," said Spies.

NOAA Fisheries biologist Hoff identified 26 skate egg nursery sites and proposed that eight of them be protected as important reproductive habitat. In 2013, the North Pacific Fishery Management Council designated six as Habitat Areas of Particular Concern.

But the reproductive behavior of skates associated with their nursery areas is still not fully understood.

"We have evidence that skates return to the same sites each year, similar to salmon returning to the streams where they hatched. If that is true, it has direct implications for conservation measures to protect habitat," Hoff explained. "We needed to understand how unique or isolated each skate egg nursery site may be, and to what degree each site contributes to the genetic diversity of the population."

Genetic detection of skate kinships

To begin to understand the relationship between Alaska skates and their nursery areas, the team turned to next-generation genetic sequencing methods.

"We asked: does skate embryo DNA differ among nursery areas?

Is it more different among sites than within?" Spies said.

Skate embryos were collected for genetic analysis from seven nursery areas in 2006, 2007, and 2016. Adult Alaska skates also were taken from several locations in the eastern Bering Sea and eastern Aleutian Islands.

Scientists extracted DNA from embryos and adults. They then compared single nucleotide polymorphisms, or SNPs (pronounced "snips") to determine how closely related skate embryos were within and among nurseries.

Findings: Nursery areas are uniquely important

Results of the study answered several of the researchers' questions, and raised some new ones.

  • Skates return to the same nursery area each year

    Genetic distinctiveness among nursery sites was consistent with skates depositing egg cases at the same nursery site each year.

    "Distinct groups use specific nurseries," Spies said. "Nursery sites are really important for the diversity of skate species. If a nursery site disappeared, so would a distinct component of the species."

  • More skate nursery areas probably exist that have not yet been discovered

    The adult Alaska skates sampled were genetically distinct from the embryos.

    "That suggests those adults came from unique nursery areas we haven't found yet," said Spies. "There is still more to their reproduction than we know about."

  • Low effective population sizes underscore the importance of nursery sites

    The study estimated effective population sizes for Alaska skates in one nursery. Effective population size is the number of individuals that effectively participates in producing the next generation. The smaller the effective population, the more it is at risk of losing genetic variation. Less genetic variation means less ability to adapt to environmental change, and higher risk of extinction.

    "While higher than the threshold theoretically required for conservation of genetic diversity, the effective population size we observed for some of the nursery sites is still quite low," Spies said. "These results emphasize the need to protect skate egg nursery areas. Multiple genetically diverse nursery areas may help conserve genetic diversity in skate species if climate or other changes reduce the population size."

  • Genetics may have revealed a cryptic new skate species

    Genetic analysis of what appeared to be Alaska skate embryos yielded surprising results.

    Some embryos, though visually indistinguishable from Alaska skates, were strikingly different genetically.

    "Did we accidentally discover a new species? These embryos were as genetically different from Alaska skates as a separate species. As different as the leopard skate. There is no difference morphologically among embryos, but often embryos don't show differences. Maybe the adults look different as they grow. I would love to be involved in finding the adults, in describing a new species," said Spies. "If it is a new species, it will be important to be aware of its nursery area(s) to include it in our fishery management plan."

Nursery areas as an evolutionary strategy

"The results of this study are significant because they justify the importance of nursery areas as essential habitat to conserve genetic diversity in Alaskan skates," Spies said. "Our findings back up Hoff's idea that nursery sites should be protected as habitat areas of particular concern."

"The genetic component of our research demonstrates that the use of skate nurseries is not equal across the study area or the population. It reinforces the idea that skate reproduction is a complex system with many factors driving when, where, and how they use egg nursery sites," said Hoff.

"We've probably only begun to understand the complexity of skate reproduction," said Spies. "Think about nursery areas as an evolutionary strategy that supports the genetic diversity and evolutionary success of these species. Nursery areas are not only important for components of the population. Multiple nursery areas offer genetic diversity to the species to meet the ecological challenges they may face in a changing Alaska."

Related Articles

Scientists estimate krill abundance in Alaska
A commonly used machine-learning algorithm was key Throughout the world, scientists engage in regular vessel surveys to produce estimates of species distribution and abundance. These estimates let scientists track species- and ecosystem-level trends over time to support ecosystem-based fishery management. Posted on 22 Feb
Oregon Coast coho sustain sportfishing seasons
Rebound of wild populations boosts productivity enough for harvest Low salmon returns have closed salmon fishing in California and limited it elsewhere on the West Coast. But Oregon anglers have enjoyed robust sportfishing on a strong wild salmon species. Posted on 23 Dec 2024
Some fish and crab may shift further north
New regional models are being developed for the Bering Sea to better anticipate climate change The eastern Bering Sea is a highly productive marine ecosystem, supporting more than 40 percent of the annual commercial fisheries landings by volume in the United States. Posted on 21 Dec 2024
How the 2024 hurricane season impacted fishing
Learn how business owners, marine ecosystems, and recreational fishing seasons were affected The 2024 Atlantic hurricane season, which officially ended on November 30, showcased above-average activity. It had a profound impact on recreational fishing in the Gulf of Mexico, causing recreational fishers to face challenges and interim closures. Posted on 20 Dec 2024
Climate, Ecosystems, and Fisheries
Climate change is impacting the nation's valuable marine and Great Lakes ecosystems The NOAA Climate, Ecosystems, and Fisheries Initiative (CEFI) is an effort to provide decision-makers with the information they need to prepare for and adapt to changing oceans and climate. Posted on 7 Dec 2024
Fifteen years of searching for smalltooth sawfish
NOAA Fisheries scientists have been studying smalltooth sawfish in South Florida since 2009 NOAA Fisheries scientists have traveled to South Florida multiple times a year for 15 years to study smalltooth sawfish. Posted on 17 Nov 2024
Harbor Seals consume up to a third of Steelhead
Unchecked predation may undermine recovery actions, study finds Harbor seals consume as many as a third of young steelhead smolts migrating out of the Nisqually River's delta in southern Puget Sound, new research shows. Posted on 21 Sep 2024
The Elwha River restoration
Elwha River restoration project offers valuable insights into the complex ecological processes Elwha River restoration project offers valuable insights into the complex ecological processes involved in dam removal and river recovery. Posted on 16 Sep 2024
Reestablishing connections for fish and tribes
North Santiam River is a high priority for the recovery of Upper Willamette River spring Chinook With $710,000 in funding from NOAA, the Confederated Tribes of the Grand Ronde will remove barriers to the passage of threatened salmon and trout species on their land. Posted on 16 Aug 2024
Progress update on two fishing data initiatives
Fishing Effort Survey study and the collaborative initiative to re-envision the partnership We may be in the dog days of summer, but I am pleased to share that progress continues on two high-visibility recreational fishing data collection initiatives — Fishing Effort Survey study and the collaborative initiative to re-envision the partnership. Posted on 15 Aug 2024
Maritimo 2023 S-Series FOOTERPalm Beach Motor Yachts